Black Holes: Difference between revisions

m
fix hottip markup
m (Mass update links)
m (fix hottip markup)
Line 18:
Stars convert hydrogen into helium via fusion. Heat is the kinetic energy of moving particles, so make it hot enough and hydrogen nuclei will move at such speed that they have no time to repel each other with electromagnetic repulsion. When they collide, they are able to fuse together thanks to the "strong force", releasing an enormous amount of energy and creating helium. On Earth, this takes a Tokamak reactor and billions of dollars; in space, all it takes is a few hundred septillion tons of hydrogen. A main-sequence star like our Sun is in a constant balancing act, where the fusion at its core produces energy, pushing outward against gravity, and preventing the outer non-fusing layers from collapsing in on the core to form "degenerate matter" (the stuff you hear about when someone starts talking about something weighing a mountain per teaspoonful or the like).
 
As the star ages, it exhausts its hydrogen supply by converting it into helium. However, the star will continue to live, as its core collapses inward on itself further, increasing the pressure and temperature at the core. Eventually, the core becomes hot enough that helium starts to fuse into heavier elements such as carbon and then oxygen. During the short period where the core is pure helium, the shell of the star, which continues to fuse hydrogen, gains enough kinetic energy to expand away from the star, becoming the outer layers of a red giant. Once the star contains a core of pure iron, however, the star's life is at its end. The cold math of hot fusion tells us that fusion releases energy only up to iron; beyond that it requires an input of energy, and a small star doesn't have the gravitational oomph necessary to provide that input. The outer layers are shed off as a planetary nebula after the core becomes solid iron. No longer supported by fusion, the exposed core of the star condenses into a degenerate-matter white dwarf which slowly cools over trillions of years into a black dwarf[[hottip:*:<ref>[[Insistent Terminology|Not to be confused with "brown dwarfs", which are substellar bodies that were never massive enough to sustain fusion to begin with.]]</ref> only a fraction of a degree above absolute zero.
 
(Incidentally, current theory indicates low-mass red dwarfs don't go through the giant stage because their outer layers are more efficiently mixed into the fusing core; it's believed they will become brighter "blue dwarfs" before settling into the inert white dwarf stage. This hasn't been verified by observation [[Time Abyss|as the universe hasn't been around for the hundreds of billions of years necessary for those stars to reach that point]].)
Line 65:
[[Category:Useful Notes]]
[[Category:Black Holes]]
[[Category:Hottip markup]]