Black Holes: Difference between revisions

No change in size ,  10 years ago
m
Mass update links
m (fix quote templates)
m (Mass update links)
Line 22:
(Incidentally, current theory indicates low-mass red dwarfs don't go through the giant stage because their outer layers are more efficiently mixed into the fusing core; it's believed they will become brighter "blue dwarfs" before settling into the inert white dwarf stage. This hasn't been verified by observation [[Time Abyss|as the universe hasn't been around for the hundreds of billions of years necessary for those stars to reach that point]].)
 
But that's only for mid-sized stars. For more massive stars, the core is bigger and thus this process starts much earlier. Following the exhaustion of hydrogen and the fusing of iron in the star core, the star (which from the outside is now a red supergiant as big as Jupiter's orbit) has an onion-like core of shells made up of the first twenty-five elements of the periodic table. The star's core becomes so hot that even those elements start to combine -- but because the binding energies of the nuclei of all elements following iron decrease successively, further fusion results in the loss of energy, rather than the release, so even as the core starts making serious elements like gold, bismuth and uranium, it can't support its own weight and collapses further, taking in more mass. If the star's mass was greater than the Chandrasekhar limit (1.4 solar masses), electron degeneracy pressure breaks down completely<ref>electrons of the same spin cannot occupy the same space; this prevents matter from collapsing, unless gravity is really kicking matter's ass</ref> because gravity merges electrons and protons together to form neutrons and the neutron star is born from dying star's core, when outer layers are blown away. The neutron star is held up against its weight by the neutron degeneracy pressure (notice a theme here?). But if the core exceeds the Tolman-Oppenheimer-Volkoff limit (about two to three solar masses, and definitely no more than five, but it's still unclear), neutron degeneracy pressure will break down as well and neutrons are merged. What should happen with matter in such case is uncertain, but the size of heavy neutron star is already close to that of black holes of same mass and so it can be assumed, that resulting object collapse below event horizon and gravity condenses the core down to a point in space that is [[Divide Byby Zero|infinitely small, yet immensely massive and infinitely dense (Density is, after all, mass divided by volume)]], called a singularity, similar to the theoretical beginning state of the universe in the Big Bang Theory. So small and so massive, not even light can escape. Or it should if initial mass was not rotating. However, it is not the case and usually a rotating black hole is formed, that is even more alien.
 
Black holes are strange things. Besides the singularity at the center, there is the event horizon, the point of no return, that once you cross it...[[Department of Redundancy Department|you can't return]]. Once inside the event horizon, you literally cannot go back: spacetime is curved in such a way by the black hole's mass that any path you take leads to the same place: the singularity. Rotating black holes also have ergosphere: a region near event horizon, where space-time spin around black holes faster then light.